Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Mol Neurobiol ; 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38358438

RESUMEN

Promoting neural cell proliferation may represent an important strategy for enhancing brain repair after developmental brain injury. The present study aimed to assess the effects of melatonin on cell proliferation after an ischemic injury in the developing hippocampus, focusing on cell cycle dynamics. After in vivo neonatal hypoxia-ischemia (HI), hippocampal cell cycle dynamics were assessed by flow cytometry, together with histological evaluation of dentate gyrus cellularity and proliferation. Melatonin significantly increased the number of proliferating cells in the G2/M phase as well as the proliferating cell nuclear antigen (PCNA) and doublecortin (DCX) labeling reduced by HI. In vivo BrdU labeling revealed a higher BrdU-positivity in the dentate gyrus of ischemic rats treated with melatonin, an effect followed by increased cellularity and preserved hippocampal tissue integrity. These results indicate that the protective effect of melatonin after ischemic injury in neonatal rats may rely on the modulation of cell cycle dynamics of newborn hippocampal cells and increased cell proliferation.

2.
Rev Neurosci ; 35(3): 331-339, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38153803

RESUMEN

Oxidative stress (OS) and inflammation play a key role in the development of hypoxic-ischemic (H-I) induced brain damage. Following H-I, rapid neuronal death occurs during the acute phase of inflammation, and activation of the oxidant-antioxidant system contributes to the brain damage by activated microglia. So far, in an animal model of perinatal H-I, it was showed that neuroprostanes are present in all brain damaged areas, including the cerebral cortex, hippocampus and striatum. Based on the interplay between inflammation and OS, it was demonstrated in the same model that inflammation reduced brain sirtuin-1 expression and affected the expression of specific miRNAs. Moreover, through proteomic approach, an increased expression of genes and proteins in cerebral cortex synaptosomes has been revealed after induction of neonatal H-I. Administration of melatonin in the experimental treatment of brain damage and neurodegenerative diseases has produced promising therapeutic results. Melatonin protects against OS, contributes to reduce the generation of pro-inflammatory factors and promotes tissue regeneration and repair. Starting from the above cited aspects, this educational review aims to discuss the inflammatory and OS main pathways in H-I brain injury, focusing on the role of melatonin as neuroprotectant and providing current and emerging evidence.


Asunto(s)
Lesiones Encefálicas , Hipoxia-Isquemia Encefálica , Melatonina , Animales , Embarazo , Femenino , Humanos , Melatonina/farmacología , Melatonina/uso terapéutico , Neuroprotección , Proteómica , Hipoxia-Isquemia Encefálica/tratamiento farmacológico , Modelos Animales de Enfermedad , Inflamación/tratamiento farmacológico , Animales Recién Nacidos
3.
J Mol Neurosci ; 73(9-10): 763-772, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37725287

RESUMEN

Despite advances in obstetric and neonatal care, challenges remain in early identification of neonates with encephalopathy due to hypoxia-ischemia who are undergoing therapeutic hypothermia. Therefore, there is a deep search for biomarkers that can identify brain injury. The aims of this study were to investigate the serum and brain expressions of two potential biomarkers, miR-126/miR-146a, in a preclinical model of hypoxia-ischemia (HI)-induced brain injury, and to explore their modulation during melatonin treatment. Seven-day-old rats were subjected to permanent ligation of the right carotid artery followed by 2.5 h hypoxia (HI). Melatonin (15 mg/kg) was administered 5 min after HI. Serum and brain samples were collected 1, 6 and 24 h after HI. Results show that HI caused a significant increase in the circulating levels of both miR-126 and miR-146a during the early phase of ischemic brain damage development (i.e. 1 h), with a parallel and opposite pattern in the ischemic cerebral cortex. These effects are not observed 24 h later. Treatment with melatonin restored the HI-induced effects on miR-126/miR-146a expressions, both in the cerebral cortex and in serum. We conclude that miR-126/miR-146a are promising biomarkers of HI injury and demonstrate an associated change in concentration following melatonin treatment.


Asunto(s)
Lesiones Encefálicas , Hipoxia-Isquemia Encefálica , Melatonina , MicroARNs , Femenino , Embarazo , Animales , Ratas , Melatonina/uso terapéutico , Animales Recién Nacidos , Hipoxia-Isquemia Encefálica/tratamiento farmacológico , Encéfalo/metabolismo , Lesiones Encefálicas/metabolismo , Biomarcadores/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Isquemia/tratamiento farmacológico , Isquemia/metabolismo
4.
Antioxidants (Basel) ; 12(3)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36978811

RESUMEN

Surgery is frequently associated with excessive oxidative stress. Melatonin acts as an antioxidant and transient melatonin deficiency has been described in neonatal surgical patients. This randomized, blinded, prospective pilot study tested the hypothesis that oral melatonin supplementation in newborn infants undergoing surgery is effective in reducing perioperative oxidative stress. A total of twenty-three newborn infants requiring surgery were enrolled: 10 received a single dose of oral melatonin 0.5 mg/kg in the morning, before surgery (MEL group), and 13 newborns served as the control group (untreated group). Plasma concentrations of melatonin, Non-Protein-Bound Iron (NPBI), Advanced Oxidation Protein Products (AOPP), and F2-Isoprostanes (F2-IsoPs) were measured. Both in the pre- and postoperative period, melatonin concentrations were significantly higher in the MEL group than in the untreated group (preoperative: 1265.50 ± 717.03 vs. 23.23 ± 17.71 pg/mL, p < 0.0001; postoperative: 1465.20 ± 538.38 vs. 56.47 ± 37.18 pg/mL, p < 0.0001). Melatonin significantly increased from the pre- to postoperative period in the untreated group (23.23 ± 17.71 vs. 56.47 ± 37.18 pg/mL; pg/mL p = 0.006). In the MEL group, the mean blood concentrations of NPBI, F2-IsoPs, and AOPP significantly decreased from the pre- to the postoperative period (4.69 ± 3.85 vs. 1.65 ± 1.18 micromol/dL, p = 0.049; 128.40 ± 92.30 vs. 50.25 ± 47.47 pg/mL, p = 0.037 and 65.18 ± 15.50 vs. 43.98 ± 17.92 micromol/dL, p = 0.022, respectively). Melatonin concentration increases physiologically from the pre- to the postoperative period, suggesting a defensive physiologic response to counteract oxidative stress. The administration of exogenous melatonin in newborn infants undergoing surgery reduces lipid and protein peroxidation in the postoperative period, showing a potential role in protecting babies from the deleterious consequences of oxidative stress.

5.
Neural Regen Res ; 18(4): 760-762, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36204833

RESUMEN

Mesenchymal stem cells are multipotent stem cells that reside in many human tissues and organs. Mesenchymal stem cells are widely used in experimental and clinical regenerative medicine due to their capability to transdifferentiate into various lineages. However, when transplanted, they lose part of their multipotency and immunomodulatory properties, and most of them die after injection into the damaged tissue. In this review, we discuss the potential utility of melatonin in preserving mesenchymal stem cells' survival and function after transplantation. Melatonin is a pleiotropic molecule regulating critical cell functions including apoptosis, endoplasmic reticulum stress, and autophagy. Melatonin is also synthesized in the mitochondria where it reduces oxidative stress, the opening of the mitochondrial permeability transition pore and the downstream caspase activation, activates uncoupling proteins, and curtails the proinflammatory response. In addition, recent findings showed that melatonin also promotes the formation of tunneling nanotubes and the transfer of mitochondria between cells through the connecting tubules. As mitochondrial dysfunction is a primary cause of mesenchymal stem cells death and senescence and a critical issue for survival after transplantation, we propose that melatonin by favoring mitochondria functionality and their transfer through tunneling nanotubes from healthy to suffering cells could improve mesenchymal stem cell-based therapy in a large number of diseases for which basic and clinical trials are underway.

6.
Cells ; 11(22)2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36429130

RESUMEN

Dysfunctional autophagy is linked to neuronal damage in ischemia/reperfusion injury. The Ras-related protein 7 (Rab7), a member of the Rab family of small GTPases, appears crucial for the progression of the autophagic flux, and its activity is strictly interconnected with the histone deacetylase Silent information regulator 1 (Sirt1) and transcription factor Forkhead box class O1 (FoxO1). The present study assessed the neuroprotective role of melatonin in the modulation of the Sirt1/FoxO1/Rab7 axis in HT22 cells and organotypic hippocampal cultures exposed to oxygen-glucose deprivation followed by reoxygenation (OGD/R). The results showed that melatonin re-established physiological levels of autophagy and reduced propidium iodide-positive cells, speeding up autophagosome (AP) maturation and increasing lysosomal activity. Our study revealed that melatonin modulates autophagic pathways, increasing the expression of both Rab7 and FoxO1 and restoring the Sirt1 expression affected by OGD/R. In addition, the Sirt1 inhibitor EX-527 significantly reduced Rab7, Sirt1, and FoxO1 expression, as well as autolysosomes formation, and blocked the neuroprotective effect of melatonin. Overall, our findings provide, for the first time, new insights into the neuroprotective role of melatonin against ischemic injury through the activation of the Sirt1/FoxO1/Rab7 axis.


Asunto(s)
Melatonina , Humanos , Melatonina/farmacología , Sirtuina 1/metabolismo , Autofagosomas/metabolismo , Isquemia , Hipocampo/metabolismo , Proteína Forkhead Box O1/metabolismo
7.
Vaccines (Basel) ; 10(7)2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35891165

RESUMEN

Advanced therapy medical products (ATMPs) are rapidly growing as innovative medicines for the treatment of several diseases. Hence, the role of quality analytical tests to ensure consistent product safety and quality has become highly relevant. Several clinical trials involving dendritic cell (DC)-based vaccines for cancer treatment are ongoing at our institute. The DC-based vaccine is prepared via CD14+ monocyte differentiation. A fresh dose of 10 million DCs is administered to the patient, while the remaining DCs are aliquoted, frozen, and stored in nitrogen vapor for subsequent treatment doses. To evaluate the maintenance of quality parameters and to establish a shelf life of frozen vaccine aliquots, a stability program was developed. Several parameters of the DC final product at 0, 6, 12, 18, and 24 months were evaluated. Our results reveal that after 24 months of storage in nitrogen vapor, the cell viability is in a range between 82% and 99%, the expression of maturation markers remains inside the criteria for batch release, the sterility tests are compliant, and the cell costimulatory capacity unchanged. Thus, the data collected demonstrate that freezing and thawing do not perturb the DC vaccine product maintaining over time its functional and quality characteristics.

8.
J Pineal Res ; 73(2): e12818, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35841265

RESUMEN

Neonatal encephalopathy (NE) is a pathological condition affecting long-term neurodevelopmental outcomes. Hypothermia is the only therapeutic option, but does not always improve outcomes; hence, researchers continue to hunt for pharmaceutical compounds. Melatonin treatment has benefitted neonates with hypoxic-ischemic (HI) brain injury. However, unlike animal models that enable the study of the brain and the pathophysiologic cascade, only blood is available from human subjects. Therefore, due to the unavailability of neonatal brain tissue, assumptions about the pathophysiology in pathways and cascades are made in human subjects with NE. We analyzed animal and human specimens to improve our understanding of the pathophysiology in human neonates. A neonate with NE who underwent hypothermia and enrolled in a melatonin pharmacokinetic study was compared to HI rats treated/untreated with melatonin. MicroRNA (miRNA) analyses provided profiles of the neonate's plasma, rat plasma, and rat brain cortexes. We compared these profiles through a bioinformatics tool, identifying Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways common to HI brain injury and melatonin treatment. After evaluating the resulting pathways and the literature, to validate the method, the key proteins expressed in HI brain injury were investigated using cerebral cortexes. The upregulated miRNAs in human neonate and rat plasma helped identify two KEGG pathways, glioma and long-term potentiation, common to HI injury and melatonin treatment. A unified neonatal cerebral melatonin-sensitive HI pathway was designed and validated by assessing the expression of protein kinase Cα (PKCα), phospho (p)-Akt, and p-ERK proteins in rat brain cortexes. PKCα increased in HI-injured rats and further increased with melatonin. p-Akt and p-ERK returned phosphorylated to their basal level with melatonin treatment after HI injury. The bioinformatics analyses validated by key protein expression identified pathways common to HI brain injury and melatonin treatment. This approach helped complete pathways in neonates with NE by integrating information from animal models of HI brain injury.


Asunto(s)
Lesiones Encefálicas , Hipotermia , Hipoxia-Isquemia Encefálica , Melatonina , MicroARNs , Animales , Animales Recién Nacidos , Humanos , Hipotermia/tratamiento farmacológico , Hipoxia-Isquemia Encefálica/tratamiento farmacológico , Hipoxia-Isquemia Encefálica/genética , Hipoxia-Isquemia Encefálica/metabolismo , Melatonina/farmacología , Melatonina/uso terapéutico , MicroARNs/genética , Proteína Quinasa C-alfa , Proteínas Proto-Oncogénicas c-akt , Ratas
10.
Biomolecules ; 12(5)2022 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-35625628

RESUMEN

The first step to obtain a cellular suspension from tissues is the disaggregation procedure. The cell suspension method has to provide a representative sample of the different cellular subpopulations and to maximize the number of viable functional cells. Here, we analyzed specific cell functions in cell suspensions from several rat tissues obtained by two different methods, automated-mechanical and enzymatic disaggregation. Flow cytometric, confocal, and ultrastructural (TEM) analyses were applied to the spleen, testis, liver and other tissues. Samples were treated by an enzymatic trypsin solution or processed by the Medimachine II (MMII). The automated-mechanical and enzymatic disaggregation procedures have shown to work similarly in some tissues, which displayed comparable amounts of apoptotic/necrotic cells. However, cells obtained by the enzyme-free Medimachine II protocols show a better preservation lysosome and mitochondria labeling, whereas the enzymatic gentle dissociation appears to constantly induce a lower amount of intracellular ROS; nevertheless, lightly increased ROS can be recognized as a complimentary signal to promote cell survival. Therefore, MMII represents a simple, fast, and standardized method for tissue processing, which allows to minimize bias arising from the operator's ability. Our study points out technical issues to be adopted for specific organs and tissues to obtain functional cells.


Asunto(s)
Testículo , Animales , Recuento de Células , Supervivencia Celular , Citometría de Flujo/métodos , Masculino , Ratas , Especies Reactivas de Oxígeno
11.
J Pineal Res ; 73(1): e12800, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35419879

RESUMEN

Efficient cell-to-cell communication is essential for tissue development, homeostasis, and the maintenance of cellular functions after injury. Tunneling nanotubes (TNTs) have emerged as a new important method of cell-to-cell communication. TNTs are primarily established between stressed and unstressed cells and can transport a variety of cellular components. Mitochondria are important trafficked entities through TNTs. Transcellular mitochondria transfer permits the incorporation of healthy mitochondria into the endogenous network of recipient cells, changing the bioenergetic profile and other functional properties of the recipient and may allow the recipient cells to recuperate from apoptotic processes and return to a normal operating state. Mesenchymal cells (MSCs) can form TNTs and transfer mitochondria and other constituents to target cells. This occurs under both physiological and pathological conditions, leading to changes in cellular energy metabolism and functions. This review summarizes the newly described capacity of melatonin to improve mitochondrial fusion/fission dynamics and promote TNT formation. This new evidence suggests that melatonin's protective effects could be attributed to its ability to prevent mitochondrial damage in injured cells, reduce senescence, and promote anastasis, a natural cell recovery phenomenon that rescues cells from the brink of death. The modulation of these new routes of intercellular communication by melatonin could play a key role in increasing the therapeutic potential of MSCs.


Asunto(s)
Melatonina , Células Madre Mesenquimatosas , Nanotubos , Comunicación Celular/fisiología , Estructuras de la Membrana Celular , Melatonina/metabolismo , Melatonina/farmacología , Células Madre Mesenquimatosas/metabolismo
12.
Biomedicines ; 11(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36672536

RESUMEN

The endocannabinoid (EC) system is a complex cell-signaling system that participates in a vast number of biological processes since the prenatal period, including the development of the nervous system, brain plasticity, and circuit repair. This neuromodulatory system is also involved in the response to endogenous and environmental insults, being of special relevance in the prevention and/or treatment of vascular disorders, such as stroke and neuroprotection after neonatal brain injury. Perinatal hypoxia-ischemia leading to neonatal encephalopathy is a devastating condition with no therapeutic approach apart from moderate hypothermia, which is effective only in some cases. This overview, therefore, gives a current description of the main components of the EC system (including cannabinoid receptors, ligands, and related enzymes), to later analyze the EC system as a target for neonatal neuroprotection with a special focus on its neurogenic potential after hypoxic-ischemic brain injury.

13.
Int J Mol Sci ; 22(24)2021 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-34948154

RESUMEN

BACKGROUND: Non-small cell lung cancer (NSCLC) is the leading cause of cancer death worldwide. Chemotherapy, the treatment of choice in non-operable cases, achieves a dismal success rate, raising the need for new therapeutic options. In about 25% of NSCLC, the activating mutations of the KRAS oncogene define a subclass that cannot benefit from tyrosine kinase inhibitors (TKIs). The tumor suppressor miR-16 is downregulated in many human cancers, including NSCLC. The main objectives of this study were to evaluate miR-16 treatment to restore the TKI sensitivity and compare its efficacy to MEK inhibitors in KRAS-mutated NSCLC. METHODS: We performed in vitro and in vivo studies to investigate whether miR-16 could be exploited to overcome TKI resistance in KRAS-mutated NSCLC. We had three goals: first, to identify the KRAS downstream effectors targeted by mir-16, second, to study the effects of miR-16 restoration on TKI resistance in KRAS-mutated NSCLC both in vitro and in vivo, and finally, to compare miR-16 and the MEK inhibitor selumetinib in reducing KRAS-mutated NSCLC growth in vitro and in vivo. RESULTS: We demonstrated that miR-16 directly targets the three KRAS downstream effectors MAPK3, MAP2K1, and CRAF in NSCLC, restoring the sensitivity to erlotinib in KRAS-mutated NSCLC both in vitro and in vivo. We also provided evidence that the miR-16-erlotinib regimen is more effective than the selumetinib-erlotinib combination in KRAS-mutated NSCLC. CONCLUSIONS: Our findings support the biological preclinical rationale for using miR-16 in combination with erlotinib in the treatment of NSCLC with KRAS-activating mutations.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Resistencia a Antineoplásicos , Neoplasias Pulmonares , Quinasas Quinasa Quinasa PAM , MicroARNs , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas p21(ras) , ARN Neoplásico , Células A549 , Animales , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/terapia , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Femenino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/terapia , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Quinasas Quinasa Quinasa PAM/genética , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , MicroARNs/biosíntesis , MicroARNs/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , ARN Neoplásico/biosíntesis , ARN Neoplásico/genética , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Int J Mol Sci ; 22(11)2021 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-34072360

RESUMEN

For many years, oncological clinical trials have taken advantage of dendritic cells (DC) for the design of DC-based cellular therapies. This has required the design of suitable quality control assays to evaluate the potency of these products. The purpose of our work was to develop and validate a novel bioassay that uses flow cytometry as a read-out measurement. In this method, CD3+ cells are labeled with a fluorescent dye and the DC costimulatory activity is measured by the degree of T cell proliferation caused by the DC-T cell interaction. The validation of the method was achieved by the evaluation of essential analytical parameters defined by international guidelines. Our results demonstrated that the method could be considered specific, selective, and robust. The comparison between measured values and estimated true values confirmed a high level of accuracy and a lack of systematic error. Repeated experiments have shown the reproducibility of the assay and the proportionality between the potency and the DC amount has proven its linearity. Our results suggest that the method is compliant with the guidelines and could be adopted as a quality control assay or batch-release testing within GMP facilities.


Asunto(s)
Vacunas contra el Cáncer/inmunología , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Biomarcadores , Vacunas contra el Cáncer/uso terapéutico , Citometría de Flujo/métodos , Humanos , Inmunofenotipificación , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Linfocitos T/inmunología , Linfocitos T/metabolismo
15.
J Pineal Res ; 71(1): e12747, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34085316

RESUMEN

Mitochondrial dysfunction is considered one of the hallmarks of ischemia/reperfusion injury. Mitochondria are plastic organelles that undergo continuous biogenesis, fusion, and fission. They can be transferred between cells through tunneling nanotubes (TNTs), dynamic structures that allow the exchange of proteins, soluble molecules, and organelles. Maintaining mitochondrial dynamics is crucial to cell function and survival. The present study aimed to assess the effects of melatonin on mitochondrial dynamics, TNT formation, and mitochondria transfer in HT22 cells exposed to oxygen/glucose deprivation followed by reoxygenation (OGD/R). The results showed that melatonin treatment during the reoxygenation phase reduced mitochondrial reactive oxygen species (ROS) production, improved cell viability, and increased the expression of PGC1α and SIRT3. Melatonin also preserved the expression of the membrane translocase proteins TOM20 and TIM23, and of the matrix protein HSP60, which are involved in mitochondrial biogenesis. Moreover, it promoted mitochondrial fusion and enhanced the expression of MFN2 and OPA1. Remarkably, melatonin also fostered mitochondrial transfer between injured HT22 cells through TNT connections. These results provide new insights into the effect of melatonin on mitochondrial network reshaping and cell survival. Fostering TNTs formation represents a novel mechanism mediating the protective effect of melatonin in ischemia/reperfusion injury.


Asunto(s)
Isquemia Encefálica/patología , Estructuras de la Membrana Celular/efectos de los fármacos , Melatonina/farmacología , Mitocondrias/efectos de los fármacos , Neuronas/ultraestructura , Animales , Línea Celular , Hipocampo/efectos de los fármacos , Hipocampo/patología , Hipocampo/ultraestructura , Ratones , Mitocondrias/metabolismo , Nanotubos , Neuronas/efectos de los fármacos , Neuronas/patología , Daño por Reperfusión/patología
16.
Diagnostics (Basel) ; 11(3)2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33800141

RESUMEN

Prostate Cancer (PCa) is one of the most frequently identified urological cancers. PCa patients are often over-diagnosed due to still not highly specific diagnostic methods. The need for more accurate diagnostic tools to prevent overestimated diagnosis and unnecessary treatment of patients with non-malignant conditions is clear, and new markers and methods are strongly desirable. Extracellular vesicles (EVs) hold great promises as liquid biopsy-based markers. Despite the biological and technical issues present in their detection and study, these particles can be found highly abundantly in the biofluid and encompass a wealth of macromolecules that have been reported to be related to many physiological and pathological processes, including cancer onset, metastasis spreading, and treatment resistance. The present study aims to perform a technical feasibility study to develop a new workflow for investigating EVs from several biological sources. Serum and urinary supernatant EVs of PCa, benign prostatic hyperplasia (BPH) patients, and healthy donors were isolated and investigated by a fast, easily performable, and cost-effective cytofluorimetric approach for a multiplex detection of 37 EV-antigens. We also observed significant alterations in serum and urinary supernatant EVs potentially related to BPH and PCa, suggesting a potential clinical application of this workflow.

17.
Oncol Rep ; 44(4): 1561-1573, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32945487

RESUMEN

Tumor protein p53 is a key regulator of several cellular pathways, including DNA repair, cell cycle and angiogenesis. Kevetrin exhibits p53­dependent as well as­independent activity in solid tumors, while its effects on leukemic cells remain unknown. The aim of the present study was to analyze the response of acute myeloid leukemia (AML) cell lines (TP53 wild­type: OCI­AML3 and MOLM­13; and TP53­mutant: KASUMI­1 and NOMO­1) to kevetrin at a concentration range of 85­340 µM. The cellular and molecular effects of the treatment were analyzed in terms of cell growth, viability [Annexin V­propidium iodide (PI) staining] and cell cycle alterations (PI staining). Gene expression profiling, western blotting and immunofluorescence were performed to elucidate the pathways underlying kevetrin activity. Pulsed exposure exerted no effect on the wild­type cells, but was effective on mutant cells. After continuous treatment, significant cell growth arrest and apoptosis were observed in all cell lines, with TP53­mutant models displaying a higher sensitivity and p53 induction. Kevetrin also displayed efficacy against TP53 wild­type and mutant primary AML, with a preferential cytotoxic activity against blast cells. Gene expression profiling revealed a common core transcriptional program altered by drug exposure and the downregulation of glycolysis, DNA repair and unfolded protein response signatures. These findings suggest that kevetrin may be a promising therapeutic option for patients with both wild­type and TP53­mutant AML.


Asunto(s)
Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Leucemia Mieloide Aguda/tratamiento farmacológico , Proteína p53 Supresora de Tumor/genética , Anciano , Anciano de 80 o más Años , Anexina A5/genética , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Femenino , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Masculino , Mutación/efectos de los fármacos , Cultivo Primario de Células
18.
ACS Chem Neurosci ; 11(9): 1291-1299, 2020 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-32271539

RESUMEN

The number of functions controlled by the endocannabinoid system in health and disease continues growing over the years. In the brain, these include the modulation of harmful events such as glutamate excitotoxicity, oxidative stress, and inflammation, mainly regulated by activation/blockade of CB1/CB2 cannabinoid receptors. In the present work, we evaluated the capacity of the CB1 antagonist/CB2 agonist synthetic cannabinoid URB447 on reducing neurodegeneration after brain injury. By using a model of hypoxia-ischemia (HI) in neonatal rats, we found that URB447 strongly reduced brain injury when administered before HI. A comparable effect was observed with the CB1 antagonist SR141716A, whereas the CB1 agonist WIN-55,212-2 reduced the effect of URB447. When administered 3 h after HI, which is considered a clinically feasible therapeutic window to treat perinatal brain injury in humans, URB447 reduced neurodegeneration and white matter damage. Markers of astrogliosis and microglial activation also appeared reduced. These results confirm the important role played by the endocannabinoid system in the neurodegenerative process and strongly encourage further research into the mechanisms of URB447-induced neuroprotection.


Asunto(s)
Lesiones Encefálicas , Cannabinoides , Enfermedades Desmielinizantes , Sustancia Blanca , Animales , Animales Recién Nacidos , Compuestos de Bencilo , Cannabinoides/farmacología , Hipoxia , Isquemia , Pirroles , Ratas , Receptor Cannabinoide CB1 , Receptor Cannabinoide CB2
19.
Br J Haematol ; 189(2): 335-338, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31792942

RESUMEN

This study was conducted to evaluate the expression of fibrinogen receptors on platelets of Philadelphia-negative chronic myeloproliferative neoplasm (MPN) patients. We collected blood samples from 40 consecutive MPN patients and healthy volunteers. We performed flow cytometry analysis of P-selectin expression and integrin beta-3, activation of glycoprotein (GP) IIb/IIIa and fibrinogen receptor exposure (PAC-1 binding). Surprisingly, we found a very low PAC-1 binding capacity in MPN patients; however, the expression of PAC-1 was almost completely recovered with aspirin intake. We hypothesize that the hypercoagulable states observed in MPN patients could depend on a primarily plasma-driven impairment of fibrin turnover and thrombin generation.


Asunto(s)
Aspirina/uso terapéutico , Fibrinógeno/uso terapéutico , Trastornos Mieloproliferativos/tratamiento farmacológico , Adulto , Anciano , Anciano de 80 o más Años , Aspirina/farmacología , Plaquetas , Enfermedad Crónica , Fibrinógeno/farmacología , Humanos , Persona de Mediana Edad
20.
Exp Neurol ; 324: 113117, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31734315

RESUMEN

Previous studies have shown that simvastatin (Sim) has neuroprotective effects in a neonatal model of hypoxia-ischemia (HI)-induced brain injury when administered before but not after HI, pointing to the preconditioning (PC)-like effects of the statin. The present study aimed to gain more insight into the PC-like effect of Sim by studying the role of autophagy and its modulation by mTOR and SIRT1 in neuroprotection. Sim potentiated the autophagy response induced by neonatal HI, as shown by the increased expression of both microtubule-associated protein 1 light chain 3 (LC3) and beclin 1, increased monodansylcadaverine (MDC) labeling, and reduced expression of p62. The autophagy inhibitor 3-methyladenine (3MA) completely blocked the neuroprotective effect of Sim. Two hours after HI, there was a reduction in the activity of mTORC1 and a concomitant increase in that of mTORC2. Sim preconditioning further decreased the activity of mTORC1, but did not affect that of mTORC2. However, 24 h after injury, mTORC2 activity was significantly preserved in Sim-treated rats. Sim preconditioning also prevented the depletion of SIRT1 induced by HI, an effect that was completely blocked by 3MA. These data show that Sim preconditioning may modulate autophagy and survival pathways by affecting mTORC1, mTORC2, and SIRT1 activities. This study provides further preclinical evidence of the PC-like effect of statins in brain tissue, supporting their beneficial effects in improving stroke outcome after prophylactic treatments.


Asunto(s)
Autofagia/efectos de los fármacos , Daño Encefálico Crónico/prevención & control , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Hipoxia-Isquemia Encefálica/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Simvastatina/farmacología , Sirtuina 1/efectos de los fármacos , Sirtuina 1/metabolismo , Adenina/análogos & derivados , Adenina/farmacología , Animales , Animales Recién Nacidos , Daño Encefálico Crónico/etiología , Daño Encefálico Crónico/patología , Hipoxia-Isquemia Encefálica/complicaciones , Hipoxia-Isquemia Encefálica/patología , Precondicionamiento Isquémico , Diana Mecanicista del Complejo 1 de la Rapamicina/efectos de los fármacos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/efectos de los fármacos , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Ratas , Ratas Sprague-Dawley , Simvastatina/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...